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Abstract.  Wildfires pose a danger to both ecologies and communities. To this end, many large-scale 

analyses of wildfire patterns and behavior rely on the aggregation of point data to polygons, typically 

those based on distinct disparate ecological areas. However, the sizes, shapes, and orientations of the 

polygons to which data are aggregated are not neutral factors in the resulting analysis. The influence of 

the aggregation polygons on calculated results is known as the modifiable areal unit problem (MAUP), 

which is well-documented in the spatial statistics literature. Despite the documentation of the MAUP, 

relatively few wildfire studies consider the effects of the MAUP on their results. Here, wildfire data from 

the Western United States are aggregated to twenty-five different sets of polygons. Variation by fishnet 

polygon area and shape are measured via summary statistics and a spatio-temporal trend analysis. 

Variation is also quantified between well-established hierarchical nested ecoregion polygons via summary 

statistics. Lastly, best practices for mitigating the effects of the MAUP on future wildfire studies are 

recommended. 
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1. Introduction   

 

Human mismanagement of forests and alterations to the climate have caused 

wildfires to burn increasingly large areas across the US in the past three decades 

(Krawchuk et al., 2009; Litschert et al.,  2012; Abatzoglou & Williams, 2016; 

Schoennagel et al., 2017; Joseph et al., 2018). The increase in wildfires has been met 

with greater efforts to control them. For example, between 1985 and 2017, total fire 

suppression costs increased from ~$200 million (2019 USD) to ~$3 billion (2019 USD), 

which exceeded the congressionally allocated funding in most recent years (Calkin et 

al., 2005; Prestemon et al., 2008; Abt et al., 2009). To mitigate future damage, it is vital 

to understand the magnitude and rate of change in wildfire distribution spatially and 

temporally.  

Many large-scale wildfire studies aggregate wildfire point data to polygons to 

enable broader correlations, predictions, and forecasts. These studies are based on large 

public databases of wildfire data such as the United States Forest Service Fire Program 
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Analysis Fire Occurrence Database (Short, 2017) and others
1
. Automated systems for 

detecting wildfires and updating databases have helped keep these datasets up-to-date 

and complete (Harris, 1996; Ambrosia et al., 1998; Feltz et al., 2003; Prins et al., 2003; 

Koltunov et al., 2013).These databases generally contain point data representing each 

wildfire’s ignition location, along with other fire attributes such as the total area burned, 

fire cause, date the fire was ignited, date the fire was contained, date the fire was 

extinguished, coordinates of the ignition location, and jurisdictional information. Data 

can then be aggregated to polygons and combined with other data relevant to the 

specific study, such as weather and climate data (Collins et al., 2006; Westerling et al., 

2006; Dennison et al., 2014). 

To generalize point-based analyses to areal conclusions, some form of 

aggregation to polygons is required. Ecoregions (or ecozones) are commonly used for 

this purpose in wildfire in studies in North America and Europe where such frameworks 

have been developed (Malamud et al.,  2005; Jiang et al., 2009; Jiang & Zhuang, 2011; 

Moreno et al., 2011; Gralewicz et al., 2012; Litschert et al., 2012; Dennison et al., 

2014;  Fusco et al., 2017; Fusco et al., 2018; Joseph et al., 2018). In North America, 

these regions were first described in 1987 and were intended to delineate areas with 

disparate abiotic, biotic, and aquatic ecosystems by maximizing intra-zonal variation 

and minimize internal variation (Omernik, 1987). Since wildfires are strongly affected 

by the ecosystems in which they occurit is logical to use ecoregions as a categorical 

framework to analyzethe patterns of wildfire occurrence. 

A larger hierarchical framework of nested ecoregions has been developed for 

North America since the original map was produced in 1987 by a collaboration of state 

and federal agencies and other partners to serve as a spatial framework for the research, 

assessment, management, and monitoring of ecosystems (McMahon et al., 2001; 

Omernik & Griffith, 2014). For example, the largest ecoregions are defined as Level I 

ecoregions, with smaller ecoregions defined as Level II. The original 1987 map was 

adapted into what are now the Level III ecoregions, and smaller sub-regions of the 

contiguous United States defined as Level IV ecoregions (McMahon et al., 2001; 

Omernik & Griffith, 2014). Although the framework of these regions is hierarchical, the 

ecoregions do not always nest perfectly, but are forced to nest for cartographic and 

database purposes (McMahon et al., 2001; Omernik, 2004; Omernik & Griffith, 2014). 

Different ecoregion levels (and thus different polygon shapes and sizes) have been 

used for a variety of research purposes. However, the defined areas to which data are 

collected can have an effect on the resulting analysis. This connection has become 

known as the Modifiable Areal Unit Problem (MAUP) (Openshaw & Taylor, 1981;  

Openshaw, 1984; Fotheringham & Wong, 1991; Jelinski & Wu, 1996).  The MAUP 

itself consists of two distinct but related problems: 1) the scale problem, and 2) the 

zoning problem. The scale problem results from the fact that relationships existing at 

onelevel of spatial analysis will not necessarily be the same strength at another level 

(Clark & Avery, 1976). Thus, if the same point/areal data were aggregated to different 

sizes of polygons, the resulting summary values could be different. In the zoning 

problem, resulting summary values could be different if the same point/areal data were 

aggregated to polygons of the same number but in different locations, orientations, or 

shapes. 

                                                 
1
 For example: the United States Federal Wildland Fire Occurrence Database (United States Department 

of Interior, 2018), the United States Monitoring Trends in Burn Severity Project (Finco et al., 2012), the 

Canadian National Fire Database (Canadian Forest Service, 2018).  
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The geographical and statistical literature has documented the effects of 

aggregating the same points to different polygons for more than 30 years (Clark & 

Avery, 1976; Perle, 1977; Openshaw & Taylor, 1981; Openshaw, 1984; Fotheringham, 

1989; Fotheringham & Wong, 1991; Jelinski & Wu, 1996), but there was no consensus 

in the wildfire literature on which aggregation level to use. Malamud et al. (2005) used 

a three-level hierarchy developed by Bailey (1995) in which there are domains (based 

primarily on climate), divisions (climate, vegetation, and soils), and provinces (climate, 

vegetation, soils, land-surface form, and fauna) (Bailey, 1983, 1995). The Bailey 

divisions are most similar to the Level I or II Omernik ecoregions. Dennison et al. 

(2014) used the Omernik Level III ecoregions to study trends in large wildfires in the 

American West. Fusco et al. (2017) used the Omernik Level I ecoregions to study 

patterns of anthropogenic wildfires in the United States. Fusco et al. (2018) used the 

Omernik Level III ecoregions in a similar study of large anthropogenic wildfires in the 

United States. Joseph et al. (2018) used the Omernik Level III ecoregions in predicting 

extreme wildfires in the United States. Gralewicz et al. (2012) used the equivalent of 

Omernik Level II ecoregions to characterize the spatial and temporal patterns of wildfire 

ignitions in Canada (Ecological Stratification Working Group, 1995). Jiang et al. (2009) 

and Jiang and Zhuang (2011) used the same ecoregions as Gralewicz et al. to study 

wildfires in boreal forests in Canada. 

Despite the near-universal acknowledgement of the MAUP in geospatial statistics 

and the development of best-practices for dealing with the MAUP, relatively few 

studies have considered the effects of the MAUP on wildfire data. However, the work 

of Fiorucci et al. (2008) demonstrated the MAUP affects the results of a popular 

technique for wildfire analysis, and that the MAUP should be further studied and 

considered. Fiorucci et al. characterized wildfire regimes under different areal 

partitioning schemes and found that the MAUP resulted in significantly different results 

for the power law parameters that characterize wildfire regime of a given area based on 

the work of Malamud et al. (2005). This study assesses the influence of the MAUP on 

the statistical analyses of large-scale wildfire datasets. As wildfire databases become 

larger and cover longer time periods, the consideration of aggregation methods and the 

MAUP will become even more significant.  

 

2. Methods & Data 
 

The central aim of our research was to assess the effects of different aggregation 

schemes on wildfire analyses. Four data sources were used. Wildfire point data during 

1981-2016 were downloaded from the U.S. Federal Wildland Fire Occurrence Database 

(United States Department of Interior, 2018). The U.S. Environmental Protection 

Agency (U.S. EPA) provided different levels of ecoregion polygon data, including 

Level I, II, and III ecoregions for North America (U.S. EPA, 2016) and Level IV 

ecoregions for the contiguous U.S.(U.S. EPA, 2016b).Annual climate data (Maximum 

vapor-pressure deficit (VPDmax), average temperature (Tmean), and total precipitation 

(PPTtotal)) rasters at 4km resolution during 1981-2016 were downloaded from the 

Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Di Luzio et 

al., 2008). 

The federal agencies that provided the wildfire data manage almost half of the 

land in the western U.S. (Vincent et al., 2017), so the study area was limited to the 

Western U.S. to mitigate sampling errors due to the lack of federally managed land (and 
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thus wildfire data) in more eastern states. State data could supplement federal data in the 

Eastern U.S., but combining state and federal data is challenging in terms of the 

differing quality and reporting formats used across agencies. Via Environmental 

Systems Research Institute (ESRI) ArcMap, all the data were set to the world 

cylindrical equal area projection. The data were restricted to those from Arizona, 

California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, 

Washington, and Wyoming, where the vast majority of wildfires occur in the lower 48 

states.  

The study area includes 100 Level I polygons, 103 Level II polygons, 155 Level 

III polygons, 3,259 Level IV polygons, and 529,933. Data on small wildfires (<1 acre) 

are often incomplete or inaccurate because small wildfires may go undetected and/or 

unreported. Therefore, wildfires which burned <1 acre were excluded, leaving 143,762 

unevenly distributed wildfire points (Figure 1). Islands were removed from the 

ecoregion polygons, leaving44 Level I polygons, 47 Level II polygons, 85 Level III 

polygons, and 3,188 Level IV polygons (Figure 2). Note the high degree of similarity 

between Level I and Level II ecoregions, and the extremely high number of polygons in 

the Level IV ecoregions. 

 

 

 
 

Figure 1. The distribution of wildfires which burned more than 1 acre 1981-2016 in the western U.S. 

Derived from the U.S. Federal Wildland Fire Occurrence Database 
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Figure 2. The ecoregion polygons in the western U.S. Note that the Level I and Level II ecoregions  

have very similar polygons, while there is an increase in detail between the Level II and the  

Level III ecoregions and a huge increase in the number of polygons between the Level III and  

Level IV polygons. 

 

 

Fishnet polygons were generated for scale and shape comparisons. Square, 

triangular, and hexagonal fishnets were created over the western United States with 

areas of 16km
2
, 64km

2
, 256km

2
, 1,024km

2
, 4,096km

2
, 16,384km

2
, and 

65,536km
2
(Figure 3-5). 

The wildfire and climate data were then aggregated to each of the fishnet and 

ecoregion polygons. The following wildfire variables were calculated and added to the 

polygon files: the total number of fires within each polygon, the total acres burned 

within each polygon, and the median fire size within each polygon. For the ecoregion 

polygons, the total area burned was normalized to the area of each polygon. The 

following climate variables were then calculated within each polygon and added to the 

polygon files: the average of the VPDmax values, the average of the Tmean values, and the 

average of the PPTtotal values.  

 

 

 



T. NAGLE-McNAUGHTON et al.: IMPLICATIONS OF THE MODIFIABLE AREAL UNIT… 

 

 

 
155 

 

 

 
Figure 3. The square fishnet polygons used in this study. Note that the extent remains constant  

across all fishnets, while the size and location of each square differs. 
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Figure 4. The triangular fishnet polygons used in this study. Note that the extent varies across 

 the fishnets, and the size and location of each triangle differs 
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Figure 5. The hexagonal fishnet polygons used in this study.Note that the extent varies  

across the fishnets, and the size and location of each hexagon differs 
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Queen-style contiguity row-standardized spatial weights were generated for each 

set of polygons in R-Studio. These weights are stored in a matrix, and they define which 

polygons are considered neighbors for later testing. Global Moran’s Index (commonly 

known as Moran’s I) (Moran, 1950) values were calculated for the total area burned in 

each set of polygons. Moran’s I measures autocorrelation, or the correlation of a 

variable with itself through space (Sokal & Oden, 1978; Legendre, 1993; Getis & Ord, 

1995). Spatial autocorrelation can be positive (when similar values occur near one 

another) or negative (when dissimilar values occur near one another). In this case, 

Moran’s I measures to what extent wildfires were likely to burn adjacent polygons. 

Moran’s I is based on cross-products of the deviations from the mean, and is calculated 

for n observations on a variable x at locations i, j as: 

2

0

( )( )

( )

ij i j

i j

i

i

w x x x x
n

I
S x x

 







 

where x is the mean of the x variable, ijw are the elements of the weight matrix, and 0S

is the sum of the elements of the weight matrix: 0 ij

i j

S w .Moran’s I value varies 

from -1 (essentially perfect negative autocorrelation) to +1 (essentially perfect positive 

autocorrelation). 

A standard ordinary least squares regression (OLS) model was applied to each set 

of polygons with total area burned as the dependent variable, and VPDmax, Tmean, and 

PPTtotal as independent variables. OLS models take the form: 

𝑦𝑖 =  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑛𝑥𝑛𝑖 + 𝜀𝑖  
where yi is the dependent variable, xji (j from 1 to n) are the set of independent variables, 

and εi is the residual, all at location i. To address the spatial autocorrelation in the 

regression, either the spatial lag (Anselin, 2003, 2013) or spatial error model (Bartels & 

Hordijk, 1977; Brandsma & Ketellapper, 1979; Anselin, 2013) can be used to perform 

the regression analysis.  

OLS models are best suited to data where there are no influences from any spatial 

neighbors, spatial lag models are best suited to data where the dependent variable is 

influenced by spatial neighbors, and spatial error models are best suited to data where 

the residuals are influenced by spatial neighbors (Baller et al., 2001). Further, the spatial 

lag model is best used in cases where a substantive spatial process is of interest, while 

spatial error models are more appropriate where variables have likely been omitted, or 

where there is a mismatch between the data scale and spatial process scale. 

Moran’s Index, Lagrange multiplier (LM), and robust Lagrange multiplier (RLM) 

(Breusch & Pagan, 1980; Anselin, 1988) tests were both performed on the OLS 

residuals. Using an ‘Anselin Style’ model selection strategy (Anselin & Rey, 1991; 

Anselin, 2005), the appropriate model was selected (Figure 6). 
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Figure 6. The Anselin method for selecting the appropriate regression model. If both lag and error tests 

are significant, the test with the lower value was be used (modified from Anselin (2005)). 

 

Spatio-temporal analyses were run in ESRI ArcGIS Pro. For each set of fishnets, a 

‘space time cube’ was generated via the Create Space Time Cube By Aggregating 

Pointstool (ESRI, 2019a). In this process, wildfire points are aggregated by a certain 

time interval, in this case one year, then aggregated and summed to the polygon which 

contains them. An Emerging Hotspot Analysis (Environmental Systems Research 

Institute, 2019b) was then performed on each space time cube. For the Emerging 

Hotspot Analysis in this study, spatial neighbors were defined by queen-style spatial 

contiguity, and temporal neighbors were defined as one year. This technique combines 

two well established statistical tests: the Getis Ord Gi* (Getis & Ord, 1992; Getis & 

Ord, 1995) to measure hot (dense and/or frequent occurrences) and cold (sparse and/or 
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infrequent occurrences)spots in space, and the Mann-Kendall trend test (Mann, 1945; 

Kendall & Gibbons, 1990) to measure trends through time. This analysis produces one 

of seventeen classifications for each polygon (Environmental Systems Research 

Institute, 2019b).  

 

3. Results 
 

Three pairs of ecoregion and fishnet polygons were of comparable average size: 

1) The Level IV ecoregions and the #4 fishnets (differing in area by 6.3%), 2) the Level 

II ecoregions and the #7 fishnets(differing in area by 0.3%), and 3) the Level I 

ecoregions and the #7 fishnets by (differing in area by 6.1%) (Table 1). 

 
Table 1. Selected characteristics of different aggregation schemes 

Aggregation scheme Average 

polygon 

area (km2) 

Number of 

polygons 

Average area burned per 

polygon (acres) 

Average number of 

wildfires per polygon 

Level I Ecoregions 69,775 44 2.42 x 106 3,266.3 

Level II Ecoregions 65,321 47 2.27 x 106 3,057.9 

Level III Ecoregions 36,119 85 1.25 x 106 1,690.8 

Level IV Ecoregions 963 3,188 3.34 x 104 45.1 

Square fishnet 1 16 236,368 1.90 x 103 0.6 

Square fishnet 2 64 59,408 4.05 x 103 2.4 

Square fishnet 3 256 14,852 1.13 x 104 9.7 

Square fishnet 4 1,024 3,713 3.78 x 104 38.7 

Square fishnet 5 4,096 960 1.37 x 105 149.8 

Square fishnet 6 16,384 240 5.07 x 105 599.0 

Square fishnet 7 65,536 60 1.90 x 106 2,396.0 

Triangular fishnet 1 16 237,405 1.890 x 103 0.6 

Triangular fishnet 2 64 59,631 4.036 x 103 2.4 

Triangular fishnet 3 256 15048 1.121 x 104 9.6 

Triangular fishnet 4 1,024 3,780 3.743 x 104 38.0 

Triangular fishnet 5 4,096 1,007 1.345 x 105 142.8 

Triangular fishnet 6 16,384 270 4.672 x 105 532.5 

Triangular fishnet 7 65,536 70 1.718 x 106 2,053.7 

Hexagonal fishnet 1 16 23,7320 1.900 x 103 0.6 

Hexagonal fishnet 2 64 59,500 4.061 x 103 2.4 

Hexagonal fishnet 3 256 15,048 1.129 x 104 9.6 

Hexagonal fishnet 4 1,024 3,784 3.780 x 104 38.0 

Hexagonal fishnet 5 4,096 1,012 1.350 x 105 142.1 

Hexagonal fishnet 6 16,384 264 4.954 x 105 544.6 

Hexagonal fishnet 7 65,536 72 1.746 x 106 1,996.7 

 

Keeping area relatively constant, polygon shape can affect statistical findings. The 

influence of polygon shape can be examined by comparing the number of wildfires and 

the total area burned across the three sets of similarly-sized polygons. The Level IV 

ecoregions had 15% more wildfires per polygon on average than the #4 fishnets, while 

the Level II ecoregions had 30% more wildfires than the #7 fishnets and the Level I 

ecoregions had 34% more wildfires than the #7 fishnets. The Level IV ecoregions had a 

13% larger area burned on average than the #4 fishnet, the Level II ecoregions had a 

21%larger area burned than the #4 fishnets, and the Level I ecoregions had a 26% larger 

area burned than the #4 fishnets.  

In these three comparisons, the ecoregions had fewer polygons than the fishnets, 

indicating that the average area was dragged down by relatively few very small 
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polygons. The #4 fishnets had an average of 18% more polygons than the Level IV 

ecoregions (3,759 versus 3,188), the #7 fishnets had an average of 43% more polygons 

than the Level II ecoregions (67 versus 47), and an average 53% more polygons than the 

Level I ecoregions (67 versus 44).  

Testing the autocorrelation of the total area burned revealed differences across the 

aggregation schemes. Using the ecoregions, aggregation scale altered significance of 

autocorrelation in the total area burned. The Level III and Level IV ecoregions had 

significant autocorrelation at 0.05 and 0.01 level respectively (Table 2). However, the 

significance of the autocorrelation was not proportional to the average polygon area, as 

the Level I ecoregions had larger Moran’s I value than the Level II ecoregions. 

For all of the fishnet polygons, aggregation scale altered the magnitude of 

autocorrelation in the total area burned and its significance. Every scale had significant 

(p < 0.01) autocorrelation (Table 2), but different Z-scores (Figure 7). The Z-scores of 

the fishnet polygons form right-skewed inverted parabolas that peak between 256 km
2
 

and  1,024 km
2
, while  the  Level  III and  IV ecoregions both  have  Z-scores  between 

2 and 4.  

 
Table 2. Moran’s I test results for the total area burned 

Aggregation 

scheme 

Level | Area (km2) Global Moran’s I  

p-value 

Global Moran’s I 

Z-score  

Global Moran’s I 

Ecoregions 

 

I 69,775 0.2063 0.82 0.07 

II 65,321 0.3348 0.43 0.03 

III 36,119 0.0121** 2.26 0.18 

IV 963 0.0051* 2.57 0.03 

Square 

fishnet 

16 2.20 x 10-16* 18.84 0.02 

64 2.20 x 10-16* 24.04 0.05 

256 2.20 x 10-16* 31.16 0.12 

1,024 2.20 x 10-16* 31.99 0.26 

4,096 2.20 x 10-16* 22.35 0.37 

16,384 2.20 x 10-16* 13.23 0.44 

65,536 1.06 x 10-9* 5.99 0.39 

Triangular 

fishnet 

16 2.20 x 10-16* 26.66 0.02 

64 2.20 x 10-16* 28.98 0.05 

256 2.20 x 10-16* 35.16 0.11 

1,024 2.20 x 10-16* 33.31 0.22 

4,096 2.20 x 10-16* 22.88 0.30 

16,384 2.20 x 10-16* 15.38 0.40 

65,536 1.19 x 10-12* 7.01 0.34 

Hexagonal 

fishnet 

16 2.20 x 10-16* 20.33 0.02 

64 2.20 x 10-16* 22.38 0.05 

256 2.20 x 10-16* 29.57 0.14 

1,024 2.20 x 10-16* 27.88 0.26 

4,096 2.20 x 10-16* 20.48 0.38 

16,384 2.20 x 10-16* 11.99 0.44 

65,536 9.07 x 10-11* 6.38 0.44 

* p-value< 0.01 

**  p-value< 0.05 

 

 

 

 

 



ADVANCES IN BIOLOGY & EARTH SCIENCES, V.4, N.3, 2019 

 

 
162 

 

Keeping area constant, the Z-scores of the Moran’s I test varied across the three 

different fishnet shapes (Figure 7). The triangular fishnet (3 neighbors per polygon) had 

the highest Z-scores, while the hexagonal fishnet (6 neighbors per polygon) had the 

lowest Z-scores except at the extreme ends of the size ranges (16km
2
 and 65,536km

2
). 

The triangular and hexagonal fishnets peaked at 256km
2
, while the square fishnet 

peaked at 1,024km
2
.  

Moran’s I values varied by polygon size, with smaller areas corresponding to 

lower values, and larger areas corresponding to higher values (Figure 8). The Moran’s 

Ivalues of the Level III ecoregion data were much smaller than the indexes of the 

corresponding fishnet data with similar average polygon areas. The shape of the 

polygons changed the significance of the autocorrelation.  

 

 

 
 

 
Figure 7. Moran’s I Z-scores for the total area burned by aggregation scheme.  

Note the log scale on the x-axis (average polygon area). 
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Figure 8. Moran’s Index values for the autocorrelation in the total area burned by aggregation scheme. 

Note the log scale on the x-axis (average polygon area) 

 

The autocorrelation in the area burned is reflected in the residuals of the OLS. The 

spatial autocorrelations in the residuals generated from the OLS model are shown in 

Table 3. Of the four ecoregions levels, again the Level III and Level IV ecoregions had 

significant autocorrelation among the residuals, indicating the underlying 

autocorrelation (Table 3). For all of the fishnet polygons, aggregation scale altered the 

magnitude of autocorrelation in the total area burned and its significance. Every scale 

had significant (p < 0.01) autocorrelation (Table 3), but different Z-scores (Figure 9). 

Keeping area constant, the Z-scores of the Moran’s I test varied across the three 

different fishnet shapes (Figure 9). The triangular fishnet had the highest Z-scores, 

while the hexagonal fishnet had the lowest Z-scores except at 16km
2
 where the square 

fishnet had the lowest Z-score. The triangular and hexagonal fishnets again both peaked 

at 256km
2
, while the square fishnet peaked at 1,024km

2
.  

Moran’s Index varied by polygon size, with smaller areas corresponding to lower 

values, and larger areas corresponding to higher values (Figure 10). The Moran’s Index 

of the Level III ecoregion data was again much lower than the indexes of the fishnet 

data with similar average polygon sizes. 
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Table 3. Moran’s I test results for OLS residuals 

Aggregation 

scheme 

Level / Area 

(km2) 

Global Moran’s I  

p-value of OLS 

residuals 

Global Moran’s I  

Z-score of OLS residuals 

Global Moran’s Index 

of OLS residuals 

Ecoregions 

 

I 69,775 0.4180 0.21 -0.03 

II 65,321 0.5665 -0.17 -0.07 

III 36,119 0.0324** 1.85 0.13 

IV 963 0.0127** 2.24 0.03 

Square fishnet 16 2.20 x 10-16* 17.6 0.018 

64 2.20 x 10-16* 22.4 0.046 

256 2.20 x 10-16* 29.2 0.120 

1,024 2.20 x 10-16* 30.4 0.253 

4,096 2.20 x 10-16* 22.1 0.362 

16,384 2.20 x 10-16* 13.5 0.433 

65,536 1.20 x 10-12* 7.0 0.402 

Triangular 

fishnet 

16 2.20 x 10-16* 25.1 0.021 

64 2.20 x 10-16* 27.0 0.045 

256 2.20 x 10-16* 32.8 0.110 

1,024 2.20 x 10-16* 31.7 0.213 

4,096 2.20 x 10-16* 22.3 0.290 

16,384 2.20 x 10-16* 15.7 0.386 

65,536 4.16 x 10-16* 8.0 0.335 

Hexagonal 

fishnet 

16 2.20 x 10-16* 19.2 0.023 

64 2.20 x 10-16* 20.9 0.050 

256 2.20 x 10-16* 27.7 0.131 

1,024 2.20 x 10-16* 26.6 0.252 

4,096 2.20 x 10-16* 19.7 0.364 

16,384 2.20 x 10-16* 11.9 0.424 

65,536 1.33 x 10-11* 6.7 0.421 

* p-value< 0.01 

**  p-value< 0.05 
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Figure 9. Moran’s I Z-scores for the OLS residuals by aggregation scheme. 

Note the log scale on the x-axis (average polygon area) 

 

 
 

Figure 10. Moran’s Index values for the autocorrelation in the OLS residuals by aggregation scheme. 

Note the log scale on the x-axis (average polygon area). 
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The choice of aggregation scheme affected which spatial model should be used 

according to the Anselin selection method (Table 4). The OLS LM/RLM testing found 

that of the twenty-five aggregation schemes, ten were best suited by an OLS model, six 

by a spatial lag model, and nine to a spatial error model (Table 4). Scale had a larger 

effect than shape: within fishnet styles, the optimal model varied unpredictably with 

polygon area, while across fishnet styles the optimal model was consistent at except at 

64km
2
 (Square: spatial error, Triangular: OLS, Hexagonal: Spatial lag). 

Table 4. Lagrange Multiplier test results and corresponding model according 

 to the Anselin method 

 
Aggregation 

scheme 

Level | Area 

(km2) 

LM  

error test 

LM  

lag test 

RLM  

error test 

RLM  

lag test 

Best model  

by Anselin method 

Ecoregions 
 

I 69,775 8.55 x 10-1 9.56 x 10-1 2.77 x 10-1 2.83 x 10-1 OLS 

II 65,321 6.17 x 10-1 8.87 x 10-1 5.36 x 10-3* 6.09 x 10-3* OLS 

III 36,119 1.74 x 10-1 9.20 x 10-2 6.11 x 10-2 3.40 x 10-2** OLS 

IV 963 3.07 x 10-2** 3.11 x 10-2** 7.96 x 10-1 8.35 x 10-1 Error 

Square 

fishnet 

16 2.20 x 10-16* 2.20 x 10-16* 2.33 x 10-5* 6.81 x 10-6* Spatial Lag 

64 2.20 x 10-16* 2.20 x 10-16* 1.91 x 10-2** 8.37 x 10-3** Spatial error 

256 2.20 x 10-16* 2.20 x 10-16* 8.30 x 10-1 2.60 x 10-1 OLS 

1,024 2.20 x 10-16* 2.20 x 10-16* 5.76 x 10-2 8.87 x 10-1 OLS 

4,096 2.20 x 10-16* 2.20 x 10-16* 1.17 x 10-4* 2.13 x 10-1 Spatial error 

16,384 2.20 x 10-16* 2.20 x 10-16* 2.75 x 10-2** 9.42 x 10-1 Spatial error 

65,536 5.06 x 10-8* 1.96 x 10-7* 8.19 x 10-2 5.25 x 10-1 OLS 

Triangular 
fishnet 

16 2.20 x 10-16* 2.20 x 10-16* 3.22 x 10-10 1.83 x 10-11* Spatial Lag 

64 2.20 x 10-16* 2.20 x 10-16* 3.49 x 10-1 1.60 x 10-1 OLS 

256 2.20 x 10-16* 2.20 x 10-16* 1.78 x 10-1 9.49 x 10-1 OLS 

1,024 2.20 x 10-16* 2.20 x 10-16* 1.81 x 10-3* 6.49 x 10-1 Spatial Error 

4,096 2.20 x 10-16* 2.20 x 10-16* 6.24 x 10-4* 6.87 x 10-1 Spatial Error 

16,384 2.20 x 10-16* 2.20 x 10-16* 1.39 x 10-2** 9.93 x 10-1 Spatial Error 

65,536 2.77 x 10-9 1.70 x 10-8 5.82 x 10-2 8.11 x 10-1 OLS 

Hexagonal 

fishnet 

16 2.20 x 10-16* 2.20 x 10-16* 4.71 x 10-8* 1.12 x 10-8* Spatial Lag 

64 2.20 x 10-16* 2.20 x 10-16* 8.25 x 10-3* 4.22 x 10-3* Spatial Lag 

256 2.20 x 10-16* 2.20 x 10-16* 2.37 x 10-1 5.72 x 10-2 OLS 

1,024 2.20 x 10-16* 2.20 x 10-16* 1.31 x 10-2** 3.26 x 10-1 Spatial Error 

4,096 2.20 x 10-16* 2.20 x 10-16* 1.27 x 10-2** 8.77 x 10-1 Spatial Error 

16,384 2.20 x 10-16* 2.20 x 10-16* 8.39 x 10-3* 9.24 x 10-1 Spatial Error 

65,536 3.55 x 10-8 9.28 x 10-8 1.62 x 10-1 7.65 x 10-1 OLS 

* p-value< 0.01 

**  p-value< 0.05 

 

The choice of aggregation scheme also affected the results from the Emerging 

Hotspot Analysis. The analysis only detected four classifications: 1) no pattern, 2) 

sporadic hot spot, 3) consecutive hot spot, and 4) new hotspot (Table 5). In every case, 

the vast majority of polygons had no pattern (Table 5). Sporadic hotspots were the 

second most common classification except for the scales of 16km
2
 and 64km

2
, where 

consecutive hotspots were second most common, and new hotspots were the least 

common of all the detected classifications (Tables 5). 

Polygon shape further affected the classification results. The triangular fishnets 

had the most sporadic hotspots, while the hexagonal fishnets had the fewest (Table 5). 

Consecutive and new hot spots did not demonstrate the same pattern (Table 5).Intra-

scale classification variation generally increased with polygon size from 0.2% at 16km
2
 

to 9% at 65,536km
2
. 
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Table 5. Results of the emerging hotspot analysis. Bold indicates the largest normalized 

 fraction of each hotspot type 

 

Area (km2) 

 

Fishnet shape 

 

No Pattern: 

# - (%) 

Sporadic Hot Spots: 

# - (%) 

Consecutive Hot 

Spots: # - (%) 

New Hot 
Spots:  

# - (%) 

 

16 

 

Square 235,673- (99.71) 102- (0.04) 302- (0.13) 291- (0.12) 

Hexagonal 236,728- (99.75) 76- (0.03) 283- (0.12) 233- (0.10) 

Triangular 236,480 - (99.61) 182 - (0.08) 364 - (0.15) 379 - (0.16) 

% Range 0.14 0.04 0.03 0.06 

 

64 

 

Square 58,967- (99.26) 133- (0.22) 184- (0.31) 124- (0.21) 

Hexagonal 59,113- (99.35) 89- (0.15) 164- (0.28) 134 - (0.23) 

Triangular 59,072- (99.06) 177 - (0.30) 250 - (0.42) 132- (0.22) 

% Range 0.29 0.15 0.14 0.02 

 

256 

 

Square 14,601- (98.31) 104- (0.70) 96- (0.65) 51 - (0.34) 

Hexagonal 14,847- (98.66) 82- (0.54) 86- (0.57) 33- (0.22) 

Triangular 14,733- (97.91) 153 - (1.02) 123 - (0.82) 39- (0.26) 

% Range 0.76 0.47 0.25 0.12 

1,024 

 

Square 3,605- (97.09) 54- (1.45) 36- (0.97) 18 - (0.48) 

Hexagonal 3,683- (97.33) 49- (1.29) 43 - (1.14) 9- (0.24) 

Triangular 3,653- (96.64) 73 - (1.93) 36- (0.95) 18 - (0.48) 

% Range 0.69 0.64 0.18 0.25 

 

4,096 

 

Square 911- (94.90) 38- (3.96) 8 - (0.83) 3 - (0.31) 

Hexagonal 962- (95.06) 36- (3.56) 10 - (0.99) 4 - (0.40) 

Triangular 948- (94.14) 51 - (5.06) 8 - (0.79) 0 - (0.00) 

 % Range 0.92 1.51 0.19 0.40 

 

16,384 

 

Square 218 - (90.83) 16 - (6.67) 5 - (2.08) 1 - (0.42) 

Hexagonal 243 - (92.05) 16 - (6.06) 5 - (1.89) 0 - (0.00) 

Triangular 245 - (90.74) 18 - (6.67) 5 - (1.85) 2 - (0.74) 

% Range 1.30 0.61 0.23 0.74 

 

65,536 

 

Square 52- (86.67) 6- (10.00) 2 - (3.33) 0 - (0.00) 

Hexagonal 64- (88.89) 7- (9.72) 1 - (1.39) 0 - (0.00) 

Triangular 56- (80.00) 12 - (17.14) 2 - (2.86) 0 - (0.00) 

% Range 8.89 7.42 1.94 -- 
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Aggregation scale and shape affected the spatial distribution of the results (Figure 

11). The results of the 16km
2
 fishnets are extremely similar (Figure 11 Row A). 

Differences in classifications across the polygon shapes are largely due to variations hot 

the hotspot polygons are grouped (e.g. the hotspots are almost entirely located in the 

same areas, but have slightly different shapes and thus different numbers of hotspot 

polygons). The results of the 64km
2
 fishnets are very similar (Figure 11 Row B) with a 

few variations in new hotspots in eastern Oregon, northwest Wyoming, eastern Arizona, 

and western New Mexico. 

The results of the 256km
2
 fishnets have very consistent groups of hotspots, with 

variations in shape largely driven by the shape of the fishnets themselves (Figure 11 

Row C). There are two notable exceptions: 1) a group in northern California that is a 

new hotspot in the square fishnet, a consistent hotspot in the hexagonal fishnet, and not 

a hotspot in the triangular fishnet, and 2) a group in eastern Arizona that is a new 

hotspot in the square fishnet, not a hotspot in the hexagonal fishnet, and a consistent 

hotspot in the triangular fishnet. 

The results of the 1,024km
2
 fishnets have similar groups of hotspots, but differ in 

their classifications (Figure 11 Row D). A group in northeastern Washington is 

composed of new hotspots in the square fishnet, but consistent hotspots in the 

hexagonal and triangular fishnets. Similarly, there is a group in central California that is 

composed of consistent hotspots in the square and hexagonal fishnets, but has some new 

hotspots in the triangular fishnet. Finally, there is a group in in central Oregon that is a 

consistent hotspot in the triangular and hexagonal fishnets, but is not a hotspot in the 

square fishnet. 

The results of the 4,096km
2
 fishnets are largely similar (Figure 11 Row E) with 

four exceptions: 1) a cell in south-central Washington that is a new hotspot in the square 

and hexagonal fishnets, but a sporadic hotspot in the triangular fishnet, 2) a group in 

central Oregon that is a sporadic hotspot in the square fishnet, a new hotspot in the 

hexagonal fishnet, and a consistent hotspot in the triangular fishnet, 3) a group along the 

California-Nevada border that is composed of all three types of hotspots in the square 

fishnet, sporadic and new hotspots in the hexagonal fishnet, and is not a hotspot in the 

triangular fishnet, and 4) a group in northern Idaho composed of sporadic and consistent 

hotspots in the square fishnet, all three types of hotspots in the hexagonal fishnet, and 

only sporadic hotspots in the triangular fishnet. 

The results of the16,384km
2
 fishnets are mostly similar (Figure 11 Row F) with 

two exceptions: 1) a group of new hotspots in northeast Washington that is only present 

in the triangular fishnet, and 2) a group along the Washington-Oregon border that is 

composed of a new and sporadic hotspot in the square fishnet, but only sporadic 

hotspots in the hexagonal and triangular fishnets. 

The results of the 65,536km
2
 fishnets have very similar distributions (Figure 11 

Row G): sporadic hotspots cover the inland Pacific Northwest, with a patch of 

consecutive hotspots in western Washington.  
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Figure 11. Spatial distributions of results from the emerging hot spot analysis by aggregation schemeA) 

16km
2
fishnets, B) 64km

2
fishnets, C) 256km

2
fishnets, D) 1,024km

2
fishnets, E) 4,096km

2
fishnets, F) 

16,384km
2
fishnets, G) 65,536km

2
fishnets.Note the obvious variability down each column (scale problem) 

as well as the variability across the rows (zone problem). 
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4. Discussion 
 

Our results demonstrate the effects that the MAUP can have on wildfire analyses 

that rely on point aggregation. This study was focused on quantifying some of the 

variability in results that arise from differing aggregation polygon sizes and shapes and 

not on perfectly modeling wildfire occurrence, patterns, or correlations with other 

variables (a great deal of this work already exists in the literature). For example, the 

OLS testing revealed that there were likely variables missing from the regression (i.e. 

the model is mis-specified). However, because all of the models were equally mis-

specified, inter-model comparisons were justified. 

The variability in burned area autocorrelation indicated the importance of the 

MAUP to future wildfire studies. Mitigating or correcting for the effects of 

autocorrelation is of primary importance in geospatial analyses, as demonstrated by the 

development of model selection strategies like Anselin (1991). However, the Moran’s I 

results demonstrated that the level of autocorrelation in the total area burned was not 

consistent across polygon shape or scale. The Level III and IV ecoregions had 

significant autocorrelation in the total area burned. Without testing the autocorrelation 

across scales, it would be impossible to predict the results because there is nothing 

intrinsic to the smaller ecoregions that should promote greater autocorrelation in those 

polygons versus the other defined ecoregions. Further, while all of the fishnet polygons 

had significant autocorrelation to varying degrees, this study was limited to three 

geometries across seven scales. Studies which aggregate data to fishnet or ecoregion 

polygons should be judicious in their aggregation scale and shape, as the magnitude of 

the autocorrelation is variable, and may not be significant in every case, and should take 

the effects of autocorrelation into account when processing and analyzing their data. 

Arbitrary aggregation schemes produce different results than more basic spatial 

units (i.e. ecoregions). In cases where fishnet and ecoregion polygons were of similar 

size on average (Level IV ecoregions and the 1,024km
2
 fishnets, Level II ecoregions 

and the 65,536km
2
 fishnets) (Table 1), the autocorrelation results were drastically 

different. Neither the Level II or Level IV ecoregions had significant autocorrelation 

(Level II p = 0.9974, Level IV p = 0.3246), while the corresponding fishnets all had 

significant autocorrelation regardless of polygon shape (p = 2.20 x 10
-16

 to 9.07 x 10
-11

). 

The results of the OLS models and LM/RLM tests illustrated that the MAUP had 

significant effects on spatial regressions. The fact that the best-suited model varied by 

polygon scale and shape indicates that the MAUP can affect the underlying 

relationships in the data. For example, there was no property intrinsic to the polygons 

where the optimal model was the spatial lag that should differentiate them as having 

high influence from spatial neighbors on the total area burned, nor as having more 

substantive spatial processes at work. Similarly, while the more frequent selection of 

spatial error models at larger aggregation scales may be indicative of the larger 

mismatch between data and process scale, the selection of the OLS model at the largest 

aggregation scale for all three fishnet styles calls this trend into question. This result 

may reflect an overall ‘dilution’ of the data from both non-federal land and no-data 

areas (i.e. areas outside of Western states) which becomes more apparent as the 

aggregation polygons become larger and both incorporate more non-federal land and 

extent further from the borders of the study area. 

The emerging hotspot analysis results demonstrated that the effects of the MAUP 

extend beyond basic geospatial statistical tests and can influence temporal patterns. 
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Aggregating the data into triangles produced more sporadic hotspots than either of the 

other two aggregation schemes, but the aggregation did not have the same effect on 

consecutive or new hotspots. This result clearly indicates that the spatial aggregation of 

points has an effect on the occurrence of spatial hotspots and illustrates how that effect 

can affect temporal analyses. 

The pattern of increasing variability in hotspot classification with aggregation 

scale is misleading. While variability increased with the aggregation scale, the number 

of polygons decreased, meaning that differences in smaller numbers of polygons 

produced larger changes in the classification percentages. In fact, while the 65,536km
2
 

polygons had the largest percentage variability in classification (4.56% on average), the 

spatial distribution of hotspots was very consistent. 

Jelinski and Wu (1996) offered five solutions to dealing with the MAUP, of which 

two are more relevant to wildfire analyses. First, a sensitivity analysis can be used to 

measure which variables are most sensitive to the MAUP by testing different polygon 

calculations across a range of aggregation schemes. This approach requires very little 

time because producing aggregation polygons and running the analyses across different 

schemes is efficient with modern software and processors. Running a sensitivity 

analysis should be considered the bare minimum solution, as it can confirm or deny if 

the MAUP is significant, and guide further analyses based on the results. Second, a 

basic entity approach can be used to identify individual entities that are ecologically 

meaningful and not modifiable on which to perform analyses. Level IV ecoregions 

represent the basic areal units of landscape ecology and can thus be used in analyses to 

mitigate the MAUP. However, this approach is not sufficient in all cases as Level IV 

ecoregions have only been defined for the contiguous United States, and the size of the 

ecoregions may be too small for some applications. 

There are also limitations to this study. First, quantifying which aggregation scale 

had the largest intra-scale variability is a difficult question. For example: Is a sporadic 

hotspot more similar to a new hotspot or a consecutive hotspot? What kind of hotspot is 

most different from no pattern? However, it is clear that the choice of aggregation 

polygon shape has an effect on the spatial distribution of hotspots in temporal analyses. 

Second, differences between the aggregation schemes may also vary with different 

temporal units used, especially given the importance of time to wildfire variables like 

fuel load accumulation and normal fire return intervals. The testing in this paper only 

encompassed temporal neighbors of 1 year, while wildfires have return intervals that 

can be much longer. Third, this study only explored the effects of the MAUP when 

aggregating wildfire data to regular isometric polygons. Future work is required to 

quantify the effects of the MAUP on other regular shapes (rectangles, isosceles 

triangles, etc.), or irregular polygons with equal or unequal areas. Finally, this study 

only used a few models to test the effects of MAUP. Additional future work could 

include analyses beyond those used in this study. For example, running a sensitivity 

analysis on a geographically weighted regression model would be a valuable 

contribution, as understanding the specific environmental factors that influence wildfire 

behavior is a critical goal of wildfire studies. 

 

5. Conclusion 

 

This study demonstrated that wildfire analyses are affected by the MAUP. 

Aggregating the same point data to different polygons changed basic summary 
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statistical measurements like Moran’s I, to the extent that interpreting the results would 

lead to different understandings of the underlying processes in the data. Additionally, 

using different aggregation schemes also changed the more meta conclusions drawn 

from the Anselin model selection methodology. Thus, the influence of the MAUP is 

non-trivial and should be considered in similar studies. The MAUP also affected the 

results of a spatio-temporal analysis, further highlighting the need for judicial study 

design and aggregation scheme selection. For wildfire analysis is recommended that 1) 

a simple sensitivity analysis be run whenever wildfire point data are aggregated to 

quantify the magnitude of the MAUP, and 2) the basic spatial unit of ecology (Level IV 

ecoregions or equivalent) be used whenever possible to mitigate the effects of the 

MAUP. 

 

References  

 
Abatzoglou, J.T. & Williams, A.P. (2016). Impact of anthropogenic climate change on wildfire 

across western US forests. Proceedings of the National Academy of Sciences, 113(42), 

11770–11775. https://doi.org/10.1073/pnas.1607171113 

Abt, K.L., Prestemon, J.P. & Gebert, K.M. (2009). Wildfire suppression cost forecasts for the 

US Forest Service. Journal of Forestry, 107(4), 173-178. 

Ambrosia, V.G., Buechel, S.W., Brass, J.A., Peterson, J.R., Davies, R.H., Kane, R.J. & Spain, 

S. (1998). An integration of remote sensing, GIS, and information distribution for wildfire 

detection and management. Photogrammetric Engineering and Remote Sensing, 64, 977–

986. 

Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial 

heterogeneity. Geographical Analysis, 20(1), 1–17. 

Anselin, L. (2003). Spatial externalities, spatial multipliers, and spatial econometrics. 

International Regional Science Review, 26(2), 153–166. 

Anselin, L. (2005). Exploring Spatial Data with GeoDa TM : A Workbook. Geography, 1–17. 

Anselin, L. (2013). Spatial econometrics: methods and models (Vol. 4). Springer Science & 

Business Media. 

Anselin, L. & Rey, S. (1991). Properties of Tests for Spatial Dependence in Linear Regression 

Models. Geographical Analysis, 23(2), 112–131. https://doi.org/10.1111/j.1538-

4632.1991.tb00228.x 

Bailey, R.G. (1983). Delineation of ecosystem regions. Environmental Management, 7(4), 365–

373. 

Bailey, R.G. (1995). Ecosystem geography. Springer. 

Baller, R.D., Anselin, L., Messner, S.F., Deane, G. & Hawkins, D.F. (2001). Structural 

Covariates of U.S. County Homicide Rates: Incorporating Spatial Effects. Criminology, 

39(3), 561–588. https://doi.org/10.1111/j.1745-9125.2001.tb00933.x 

Bartels, C.P.A. & Hordijk, L. (1977). On the power of the generalized Moran contiguity 

coefficient in testing for spatial autocorrelation among regression disturbances. Regional 

Science and Urban Economics, 7(1–2), 83–101. 

Brandsma, A.S. & Ketellapper, R.H. (1979). Further evidence on alternative procedures for 

testing of spatial autocorrelation among regression disturbances. In Exploratory and 

explanatory statistical analysis of spatial data (pp. 113–136). Springer. 

Breusch, T.S. & Pagan, A.R. (1980). The Lagrange multiplier test and its applications to model 

specification in econometrics. The Review of Economic Studies, 47(1), 239–253. 

Calkin, D.E., Gebert, K.M., Jones, J.G., & Neilson, R.P. (2005). Forest Service large fire area 

burned and suppression. Journal of Forestry, 103(4), 179–183. 

Canadian Forest Service. (2018). Canadian National Fire Database – Agency Fire Data. 

Retrieved from http://cwfis.cfs.nrcan.gc.ca/ha/nfdb 



T. NAGLE-McNAUGHTON et al.: IMPLICATIONS OF THE MODIFIABLE AREAL UNIT… 

 

 

 
173 

 

Clark, W.A.V. & Avery, K.L. (1976). The Effects of Data Aggregation in Statistical Analysis. 

Geographical Analysis, 8(4), 428–438. https://doi.org/10.1111/j.1538-

4632.1976.tb00549.x 

Collins, B.M., Omi, P.N. & Chapman, P.L. (2006). Regional relationships between climate and 

wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research, 

36(3), 699–709. https://doi.org/10.1139/x05-264 

Dennison, P.E., Brewer, S.D., Arnold, J.D. & Moritz, M.A. (2014). Large wildfire trends in the 

western United States, 1984–2011. Geophysical Prospecting, 41(8), 2928–2933. 

https://doi.org/10.1002/2014GL061184.Received 

Di Luzio, M., Johnson, G.L., Daly, C., Eischeid, J.K. & Arnold, J.G. (2008). Constructing 

retrospective gridded daily precipitation and temperature datasets for the conterminous 

United States. Journal of Applied Meteorology and Climatology, 47(2), 475–497. 

https://doi.org/10.1175/2007JAMC1356.1 

Ecological Stratification Working Group. (1995). A National Ecological Framework for 

Canada. In Environment. https://doi.org/Cat. No. A42-65/1996E; ISBN 0-662-24107-X 

Environmental Systems Research Institute. (2019a). Create Space Time Cube By Aggregating 

Points. Retrieved from https://pro.arcgis.com/en/pro-app/tool-reference/space-time-

pattern-mining/create-space-time-cube.htm 

Environmental Systems Research Institute. (2019b). Emerging Hot Spot Analysis. Retrieved 

from https://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-

mining/emerginghotspots.htm 

Feltz, J.M., Moreau, M., Prins, E.M., McClaid-Cook, K. & Brown, I.F. (2003). Recent 

validation studies of the GOES wildfire automated biomass burning algorithm 

(WF_ABBA) in North and South America. 2nd Int. Wildland Fire Ecology Fire 

Management Congress, 5th Symp. Fire Forest Meteorology, Orlando, FL. 

Finco, M., Quayle, B., Zhang, Y., Lecker, J., Megown, K.A., & Brewer, C.K. (2012). 

Monitoring trends and burn severity (MTBS): monitoring wildfire activity for the past 

quarter century using Landsat data. In: Morin, Randall S.; Liknes, Greg C., Comps. 

Moving from Status to Trends: Forest Inventory and Analysis (FIA) Symposium 2012; 

2012 December 4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-105. Newtown Square, PA: 

US Department of Agriculture, Forest Service, 222–228. 

Fotheringham, A.S. & Wong, D.W.S. (1991). The modifiable areal unit problem in multivariate 

statistical analysis. Environment and Planning A, 23, 1025–1044. 

Fotheringham, A.S. (1989). Scale-independent spatial analysis. Accuracy of Spatial Databases, 

221–228. 

Fusco, E., Bradley, B. & Abatzoglou, J.T. (2018). Human-Related Ignitions Increase the 

Number of Large Wildfires across U.S. Ecoregions. Fire, 1(1), 4. 

https://doi.org/10.3390/fire1010004 

Fusco, E.J., Mahood, A.L., Balch, J.K., Bradley, B.A., Abatzoglou, J.T. & Nagy, R.C. (2017). 

Human-started wildfires expand the fire niche across the United States. Proceedings of the 

National Academy of Sciences, 114(11), 2946–2951. 

https://doi.org/10.1073/pnas.1617394114 

Getis, A. & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics, 

Geographycal Analysis, 24. 

Getis, A. & Ord, J.K. (1995). Local Spatial Autocorrelation Statistics: Distributional Issues and 

an Application. Geographical Analysis, 27(4), 286–306. https://doi.org/10.1111/j.1538-

4632.1995.tb00912.x 

Gralewicz, N.J., Nelson, T.A. & Wulder, M.A. (2012). Spatial and temporal patterns of wildfire 

ignitions in Canada from 1980 to 2006. International Journal of Wildland Fire, 21(3), 

230–242. https://doi.org/10.1071/WF10095 

Harris, A.J.L. (1996). Towards Automated Fire Monitoring From Space: Semi-Automated 

Mapping of the January 1994 New South Wales Wildfires Using AVHRR Data. 

International Journal of Wildland Fire, 6(3), 107–116. 



ADVANCES IN BIOLOGY & EARTH SCIENCES, V.4, N.3, 2019 

 

 
174 

 

Jelinski, D.E. & Wu, J. (1996). The modifiable areal unit problem and implications for 

landscape ecology. Landscape Ecology, 11(3), 129–140.  

https://doi.org/10.1007/BF02447512 

Jiang, Y. & Zhuang, Q. (2011). Extreme value analysis of wildfires in Canadian boreal forest 

ecosystems. Canadian Journal of Forest Research, 41(9), 1836–1851.  

https://doi.org/10.1139/x11-102 

Jiang, Y., Zhuang, Q., Flannigan, M.D. & Little, J.M. (2009). Characterization of wildfire 

regimes in Canadian boreal terrestrial ecosystems.  International Journal of Wildland Fire, 

18(8), 992. https://doi.org/10.1071/wf08096 

Joseph, M.B., Rossi, M.W., Mietkiewicz, N.P., Mahood, A.L., Cattau, M.E., Denis, L.A. St., … 

Balch, J.K. (2018). Understanding and predicting extreme wildfires in the contiguous 

United States. BioRxiv, 384115. https://doi.org/10.1101/384115 

Kendall, M.G. & Gibbons, J.D. (1990). Rank Correlation Methods, fifthed. Griffin, London, 

UK. 

Koltunov, A., Ustin, S.L. & Prins, E.M. (2012). On timeliness and accuracy of wildfire 

detection by the GOES WF-ABBA algorithm over California during the 2006 fire season. 

Remote Sensing of Environment, 127, 194–209. 

Krawchuk, M.A., Moritz, M.A., Parisien, M.A., Van Dorn, J. & Hayhoe, K. (2009). Global 

pyrogeography: The current and future distribution of wildfire. PLoS ONE, 4(4). 

https://doi.org/10.1371/journal.pone.0005102 

Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74(6), 1659–

1673. 

Litschert, S.E., Brown, T.C. & Theobald, D.M. (2012). Historic and future extent of wildfires in 

the Southern Rockies Ecoregion, USA. Forest Ecology and Management, 269, 124–133. 

https://doi.org/10.1016/j.foreco.2011.12.024 

Malamud, B.D., Millington, J. D.A. & Perry, G.L.W. (2005). Characterizing wildfire regimes in 

the United States. Proceedings of the National Academy of Sciences, 102(13), 4694–4699. 

https://doi.org/10.1073/pnas.0500880102 

Mann, H.B. (1945). Nonparametric tests against trend. Econometrica: Journal of the 

Econometric Society, 245–259. 

McMahon, G., Gregonis, S.M., Waltman, S.W., Waltman, S.W., Omernik, J.M., Omernik, J.M., 

… Keys, J.E. (2001). Developing a Spatial Framework of Common Ecological Regions 

for the Conterminous United States. Environmental Management, 28(3), 293–316. 

https://doi.org/10.1007/s002670010225 

Miller, J., Borne, K., Thomas, B., Huang, Z., & Chi, Y. (2013). Automated wildfire detection 

through artificial neural networks. In Remote Sensing and Modeling Applications to 

Wildland Fires (pp. 293–304). Springer. 

Moran, P.A.P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17–23. 

Moreno, M.V., Malamud, B.D. & Chuvieco, E. (2011). Wildfire frequency-area statistics in 

Spain. Procedia Environmental Sciences, 7, 182–187.  

https://doi.org/10.1016/j.proenv.2011.07.032 

Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association 

of American Geographers, 77(1), 118–125. 

Omernik, J.M. (2004). Perspectives on the Nature and Definition of Ecological Regions. 

Environmental Management, 34(S1), S27–S38. https://doi.org/10.1007/s00267-003-5197-

2 

Omernik, J.M. & Griffith, G.E. (2014). Ecoregions of the Conterminous United States: 

Evolution of a Hierarchical Spatial Framework. Environmental Management, 54(6), 1249–

1266. https://doi.org/10.1007/s00267-014-0364-1 

Openshaw, S. (1984). The modifiable areal unit problem. Concepts and Techniques in Modern 

Geography. 

Openshaw, S. & Taylor, P. (1981). Quantitative Geography: A British View, chapter The 

Modifiable Areal Unit Problem. London: Routledge. 



T. NAGLE-McNAUGHTON et al.: IMPLICATIONS OF THE MODIFIABLE AREAL UNIT… 

 

 

 
175 

 

Perle, E.D. (1977). Scale changes and impacts on factorial ecology structures. Environment and 

Planning A, 9(5), 549–558. 

Prestemon, J.P., Abt, K. & Gebert, K. (2008). Suppression cost forecasts in advance of wildfire 

seasons. Forest Science, 54(4), 381–396. 

Prins, E.M., Schmidt, C.C., Feltz, J.M., Reid, J.S., Westphal, D.L. & Richardson, K. (2003). A 

two-year analysis of fire activity in the western hemisphere as observed with the GOES 

wildfire automated biomass burning algorithm. 

Schoennagel, T., Balch, J.K., Brenkert-Smith, H., Dennison, P.E., Harvey, B.J., Krawchuk, 

M.A., … Whitlock, C. (2017). Adapt to more wildfire in western North American forests 

as climate changes. Proceedings of the National Academy of Sciences, 114(18), 4582–

4590. https://doi.org/10.1073/pnas.1617464114 

Short, K.C. (2017). Spatial wildfire occurrence data for the United States, 1992-2015 

[FPA_FOD_20170508]. 

Sokal, R.R. & Oden, N.L. (1978). Spatial autocorrelation in biology: 1. Methodology. 

Biological Journal of the Linnean Society, 10(2), 199–228. 

United States Department of Interior. (2018). The Federal Fire Occurrence Database. 

Retrieved from https://wildfire.cr.usgs.gov/firehistory/data.html 

United States Environmental Protection Agency. (2016a). Ecoregions of North America. 

Retrieved from https://www.epa.gov/eco-research/ecoregions-north-america 

United States Environmental Protection Agency. (2016b). Level III and IV Ecoregions of the 

Continental United States. Retrieved from https://www.epa.gov/eco-research/level-iii-and-

iv-ecoregions-continental-united-states 

Vincent, C.H., Hanson, L.A. & Argueta, C.N. (2017). Federal Land Ownership: Overview and 

Data Carol Hardy Vincent Specialist in Natural Resources Policy Analyst in Immigration 

Policy. Congressional Research Service, 28. Retrieved from 

https://fas.org/sgp/crs/misc/R42346.pdf 

Westerling, A.L., Hidalgo, H.G., Cayan, D.R. & Swetnam, T.W. (2006). Warming and earlier 

spring increase Western U.S. forest wildfire activity. Science, 313(5789), 940–943. 

https://doi.org/10.1126/science.1128834 

 


